Giải hệ phương trình:$\left\{\begin{matrix} x^3+y^3=1 & & \\ x^4+y^4=1& & \end{matrix}\right.$
Lời giải:
$PT(2)\Rightarrow \left\{\begin{matrix}x^4\leq 1 & & \\ y^4\leq 1 & & \end{matrix}\right.\Rightarrow -1\leq x;y\leq 1$
Vì $x\leq 1\Rightarrow x^3\leq 1$, khi đó theo $(1)$ ta có: $y\geq 0$
Vì $y\leq 1\Rightarrow y^3\leq 1$, khi đó theo $(1)$ ta có: $x\geq 0$
Vậy $0\leq x;y\leq 1$
Có: $x^4+y^4=x^3+y^3=1$
$\Rightarrow x^3(1-x)+y^3(1-y)=0$
$\Rightarrow x^3(1-x)+y^3(1-y)=0$
Do $0\leq x;y\leq 1$ nên $x^3(1-x)\geq 0;y^3(1-y)\geq 0$
$\Rightarrow \left\{\begin{matrix}x^3(1-x)=0 & & \\ y^3(1-y)=0 & & \end{matrix}\right.\Rightarrow (x;y)=(0;1);(1;0)$
Không có nhận xét nào:
Đăng nhận xét