About

Thứ Ba, 9 tháng 9, 2014

Chuyên đề ĐA THỨC (phần IV)


147654000669718.png
CHUYÊN ĐỀ VỀ ĐA THỨC 
Trần Nam Dũng
Phần I: Xem tại đây
PHẦN II: Xem tại đây
Phần III : Xem tại đây
Phần IV :Công thức nội suy Lagrange

4.1. Các ví dụ mở đầu
Ví dụ 1. Tìm tất cả các đa thức thoả mãn điều kiện $P(x)$ thoả điều kiện
$P(1)=1;P(2)=2;P(3)=4$
Lời giải: Rõ ràng nếu $P$ và $Q$ là hai đa thức thoả điều kiện của để bài thì $P(x)-Q(x)$ sẽ bằng $0$ tại các điểm $1,2,3$ và từ đó , ta có $P(x)-Q(x)=(x-1)(x-2)(x-3).H(x)$ . Ngược lại nếu $P(x)$ là đa thức thoả mãn điều kiện của để bài thì các đa thức $Q(x)=P(x)+(x-1)(x-2)(x-3).H(x)$ cũng thoả mãn điều kiện đề bài với mọi $H(x).$ Từ đó có thể thấy rằng có vô số các đa thức thoả mãn điều kiện đề bài.
Ta đặt ra câu hỏi: Trong các đa thức thoả mãn điều kiện đề bài, hãy tìm đa thức có bậc nhỏ nhất. Rõ ràng đa thức này không thể là hằng số, cũng không thể là bậc nhất. Ta thử tìm bậc tiếp theo là bậc $2.$
Giả sử $P(x) = ax^2 + bx + c$ là đa thức thoả mãn điều kiện đề bài. Khi đó:
$P(1)=1\Rightarrow a+b+c=1$
$P(2)=2\Rightarrow 4a+2b+c=2$
$P(3)=4\Rightarrow 9a+3b+c=4$
Giải hệ này ra ta được $\left ( a,b,c \right )=\left ( \frac{1}{2};\frac{-1}{2};1 \right )$ , ta được $P(x)=\frac{1}{2}x^2-\frac{1}{2}x+1$ là đa thức bậc nhỏ nhất thoả mãn điều kiện. Và theo như lý luận ở trên , mọi nghiệm của bài toán sẽ có dạng:
$Q(x) = P(x) + (x-1)(x-2)(x-3)H(x)$
với $H(x)$ là một đa thức tuỳ ý.


Ví dụ 2. Tìm đa thức bậc nhỏ nhất thoả mãn điều kiện
$P(-2) = 0, P(-1) = 1, P(0) = 1, P(1) = 2, P(2) = 3$
Lời giải. Từ ý tưởng phương pháp hệ số bất định và hệ phương trình bậc nhất ở trên. Ta thấy rằng chắn chắn sẽ tồn tại đa thức bậc không quá $4$ thoả mãn điều kiện đề bài. Xét $P(x) = ax^4 + bx^3 + cx^2 + dx + e$. Từ điều kiện đề bài suy ra hệ:
$\left\{\begin{matrix} 16a-8b+4c-2d+e=0\\ a-b+c-d+e=1\\ e=1\\ a+b+c+d+e=2\\ 16a+8b+4c+2d+e=3 \end{matrix}\right.$
Giải hệ này ta được $a = \frac{-1}{8}, b =\frac{-1}{12}, c = \frac{5}{8}, d = \frac{5}{12}, e = 1.$
4.2. Công thức nội suy Lagrange
Từ các ví dụ cụ thể nêu trên, ta có thể dự đoán rằng với mọi các bộ $n+1$ số phân biệt $\left ( a_{0},a_{1},...,a_{n} \right )$ và bộ $n+1$ số bất kỳ $b_{0}, b_{1}, ..., b_{n}$ sẽ tồn tại một đa thức $P(x)$ bậc không vượt quá $n$ thoả mãn điều kiện
$P(a_{i}) = bi ,\forall i=0, 1, 2, ..., n. (*)$
Ngoài ra, do tất cả các đa thức $Q(x)$ thoả mãn $(*)$ sẽ phải có dạng
$Q(x) = P(x) +(x-a_{0})(x-a_{1})...(x-a_{n}).H(x)$
với $H(x)$ là một đa thức nào đó nên các nghiệm khác của $(*)$ đều có bậc $\geq n+1.$
Vì thế ta có thể đề xuất định lý sau:
Định lý. Cho bộ $n+1$ số thực phân biệt (a_{0}, a_{1}, ..., a_{n}) và bộ $n+1$ số bất kỳ (b_{0}, b{1},..., b_{n}). Khi đó tồn tại duy nhất một đa thức $P(x)$ có bậc không vượt quá $n$ thoả mãn điều kiện $P(a_{i}) = bi ,\forall i=0, 1, 2, ..., n. (*)$
Sự duy nhất được chứng minh khá dễ dàng theo như lý luận ở trên. Tuy nhiên, việc chứng minh tồn tại cho trường hợp tổng quát là không đơn giản, vì điều này tương đương với việc chứng minh một hệ phương trình $n+1$ phương trình, $n+1$ ẩn số có nghiệm (duy nhất). Rất thú vị là ta tìm được cách chứng minh định lý này một cách xây dựng, tức là tìm ra được biểu thức tường minh của đa thức P(x) mà không cần phải giải hệ phương trình hệ số bất định nêu trên.
Ý tưởng chứng minh này như sau. Ta đi tìm các đa thức $P_{0}(x), P_{1}(x) …, P_{n}(x)$ bận $n$ thoả mãn điều kiện sau:
$P_{i}(a_{j})=\delta _{ij}$
Trong đó :
$\delta _{ij}=\left\{\begin{matrix} 1 i=j\\0 i\neq j \end{matrix}\right.$
Khi đó đa thức $P(x)=\sum_{i=0}^{n}b_{i}P_{i}(x)$ sẽ thoả mãn điều kiện vì
$P(a_{j})=\sum_{i=0}^{n}b_{i}P_{i}(a_{j})=\sum_{i=0}^{n}b_{i}\delta _{ij}=b_{j}$
Vấn đề còn lại là đi tìm các đa thức $P_{i}(x)$. Vì $P_{i}(a_{j})=0$ với mọi $i\neq j$ nên:
$P_{i}(x)=C_{i}(x-a_{0})...(x-a_{i-1})(x-a_{i+1})...(x-a_{n})$
Vì $P_{i}(a_{i})=1$ nên 
$C_{i}=\frac{1}{(a_{i}-a_{0})...(a_{i}-a_{i-1})(a_{i}-a_{i+1})...(a_{i}-a_{n})}$
Như thế ta tìm được 
$P_{i}(x)=\frac{(x-a_{0})...(x-a_{i-1})(x-a_{i+1})...(x-a_{n})}{(a_{i}-a_{0})...(a_{i}-a_{i-1})(a_{i}-a_{i+1})...(a_{i}-a_{n})} (**) $
là các đa thức thỏa mãn hệ điều kiện $P_{i}(a{j})=\delta_{ij}$
Công thức nội suy Lagrange. Cho bộ $n+1$ số thực phân biệt $(a_{0}, a_{1}, ..., a_{n})$ và bộ $n+1$ số bất kỳ $(b_{0}, b_{1}, ..., b_{n})$. Khi đó đa thức
$P(x)=\sum_{i=0}^{n}b_{i}P_{i}(x)$
là đa thức duy nhất có bậc không vượt quá $n$ thỏa mãn điều kiện $P(a_{i})=b_{i}$ với mọi $i=0,1,2,3,...,n$. Các đa thức $P_{i}(x)$ là các đa thức bậc $n$ được định nghĩa bởi $(**)$
4.3. Ứng dụng của công thức nội suy Lagrange
Bài toán nội suy là một trong các bài toán cơ bản của toán lý thuyết và toán ứng dụng. Trong thực tế, chúng ta không thể đo được giá trị của một hàm số tại mọi điểm, mà chỉ đo được tại một số điểm. Các công thức nội suy cho phép chúng ta, bằng phép đo tại một số điểm, "dựng" lại một đa thức xấp xỉ cho hàm số thực tế. Công thức nội suy Lagrange, vì thế có nhiều ứng dụng trong vật lý, trắc địa, kinh tế học, khí tượng thuỷ văn, dự đoán dự báo … Tuy nhiên, ta sẽ không đi sâu về các vấn đề này. Dưới đây ta xem xét một số ứng dụng của công thức nội suy $Lagrange$ trong các bài toán phổ thông.
4.4. Các bài tập có lời giải
Bài 1. Rút gọn biểu thức
$$A=\frac{a^2}{(a-b)(a-c)}+\frac{b^2}{(b-c)(b-a)}+\frac{c^2}{(c-b)(c-a)}$$
Lời giải. Áp dụng công thức nội suy $Lagrange$ cho hàm số $P(x) = x^2$ với các điểm $a, b, c$ và giá trị tương ứng là $a^2, b^2, c^2$, ta có:
$P(x)=\frac{a^2(x-b)(x-c)}{(a-b)(a-c)}+\frac{b^2(x-c)(x-a)}{(b-c)(b-a)}+\frac{c^2(x-a)(x-b)}{(c-b)(c-a)}$
So sánh hệ số $x^2$ ở hai vế , ta được $A=1$
Bài 2.  Cho đa thức $P(x)$ bậc $n$ thoả mãn điều kiện $P(k)=\frac{k}{k+1};\forall k=0,1, 2, …, n$. Hãy tìm $P(n+1)$
Lời giải. Theo công thức nội suy $Lagrange$ thì
$P(x)=\sum_{k=0}^{n}\frac{k}{k+1}.\frac{x(x-1)...(x-k+1)(x-k-1)...(x-n)}{k(k-1)...1.(-1)...(k-n)}$
Từ đó :
$$P(x)=\sum_{k=0}^{n}\frac{k}{k+1}.\frac{(n+1)...(n-k+2)(n-k)...(1)}{k(k-1)...1.(-1)...(k-n)}=\sum_{k=0}^{n}\frac{k}{k+1}.\frac{(n+1)...(n-k+2)(n-k+1)(n-k)...(1)}{k(k-1)...1.(-1)...(k-n)(n-k+1)}=\sum_{k=0}^{n}(-1)^{n-k}.k.\frac{(n+1)!}{(k+1)!(n-k+1)!}=\frac{1}{n+2}\sum_{k=0}^{n}.(-1)^{n-k}.C_{n+2}^{k+1}$$
Cách 2. Xét đa thức $(x+1)P(x) – x$ có bậc $n$ và có $n+1$ nghiệm $x = 0, 1, 2, …, n.$
Do đó, ta có:
$$(x+1)P(x) – x = ax(x-1)(x-2)…(x-n)$$
với $a$ là $1$ hằng số.
Thay $x=-1$ , ta được $1=a(-1)(-2)...(-n-1)=a(-1)^{n+1}(n+1)!$
Suy ra $a=\frac{(-1)^{n+1}}{(n+1)!}$
Từ đó $(n+2)P(n+1)-(n+1)=n!\frac{(-1)^{n+1}}{(n+1)!}=\frac{(-1)^{n+1}}{n+1}$
Suy ra $P(n+1)=\frac{\left [ (n+1)^2+(-1)^{n+1} \right ]}{(n+2)}$
Bài 3. Cho tam thức bậc hai $P(x) = ax^2 + bx + c$ thoả mãn điều kiện $\left | P(x) \right |\leq 1,\forall x\leq 1$.Chứng minh rằng:
$$\left | a \right |+\left | b \right |+\left | c \right |\leq 3$$ 
Lời giải. Thực hiện phép nội suy tại $3$ điểm $-1, 0, 1$ , ta có:
$P(x)=P(-1).\frac{x(x-1)}{(-1-0)(-1-1)}+P(0).\frac{(x+1)(x-1)}{(0+1)(0-1)}+P(1).\frac{x(x+1)}{(1+0)(1+1)}$
Suy ra $P(x)=\frac{P(1)+P(-1)-2P(0)}{2}.x^2+\frac{P(1)-P(-1)}{2}x+P(0)$
Từ đó $a=\frac{P(1)+P(-1)-2P(0)}{2},b=\frac{P(1)-P(-1)}{2},c=P(0)$
Suy ra
$$\left | a \right |+\left | b \right |+\left | c \right |=\left | \frac{P(1)+P(-1)-2P(0)}{2} \right |+\left | \frac{P(1)-P(-1)}{2} \right |+\left | P(0) \right |\leq \left | \frac{P(1)+P(-1)}{2} \right |+\left | \frac{P(1)-P(-1)}{2} \right |+2\left | P(0) \right |\leq max\begin{Bmatrix} {\left | P(1) \right |,\left | P(-1) \right |} \end{Bmatrix}++2\left | P(0) \right |\leq 3$$
4.5. Bài tập tự giải
Bài 1. Rút gọn biểu thức:
$$A=\frac{a^4}{(a-b)(a-c)}+\frac{b^4}{(b-a)(b-c)}+\frac{c^4}{(c-a)(c-b)}$$
Bài 2. Cho $M(y)$ là một đa thức bậc $n$ sao cho $M(y) = 2^y$ với $y = 1, 2, …, n+1$. Hãy tìm $M(n+2).$
Bài 3. Cho đa thức $P(x)=x^{10}+a_{9}x^9+...+a_{1}x+a_{0}$. Biết rằng $P(-1)=P(1),P(2)=P(-2),...,P(-5)=P(5)$ . Chứng minh rằng $P(x)=P(-x), \forall x \in \mathbb{R}$
Bài 4. Cho $x_{0}< x_{1}< x_{2}<...< x_{n}$ là các số nguyên và $P(x)$ là đa thức bậc $n$ có hệ số cao nhất bằng $1$ . Chứng minh rằng tồn tại $i\in\begin{Bmatrix} 0,1,...,n \end{Bmatrix}$ sao cho $\left | P(x_{i}) \right |\geq \frac{n!}{2^{n}}$
Bài 5. Một chiếc tàu với vận tốc không đổi đi ngang qua một hòn đảo. Thuyền trưởng cứ mỗi giờ lại đo khoảng cách từ tàu đến đảo. Vào lúc $12, 14$ và $15$ giờ tàu cách đảo các khoảng cách tương ứng là $7, 5$ và $11$ km. Hỏi vào lúc $13$ giờ tàu cách đảo bao nhiêu $km$. Và lúc $16$ giờ, tàu sẽ cách đảo bao nhiêu $km$?
Bài 6. Trên mặt phẳng cho $100$ điểm. Biết rằng với bốn điểm bất kỳ trong chúng đều có một $parabol$ bậc $2$ đi qua. Chứng minh rằng tất cả các điểm đã cho đều nằm trên một $parabol$ bậc 2.

1 nhận xét: