Processing math: 0%

About

Thứ Hai, 1 tháng 9, 2014

\left\{\begin{matrix} x^2+y^2+xy=9 & & \\ y^2+z^2+yz=16 & & \\ z^2+x^2+zx=25 & & \end{matrix}\right.

Bài toán:
\left\{\begin{matrix} x^2+y^2+xy=9 & & \\ y^2+z^2+yz=16 & & \\ z^2+x^2+zx=25 & & \end{matrix}\right.
Tìm xy+yz+xz


Lời giải:
(1)+(2)+(3)\Leftrightarrow 50=2\sum a^2+\sum ab
\Leftrightarrow 50-\left ( \sum a \right )^2=\sum a^2-\sum ab~~(*)
(1)-(2)\Leftrightarrow (a-c)(a+b+c)=-7
(2)-(3)\Leftrightarrow (b-a)(a+b+c)=-9
(1)-(3)\Leftrightarrow (b-c)(a+b+c)=-16
\Rightarrow \dfrac{1}{a+b+c}=\dfrac{a-b}{9}=\dfrac{c-a}{7}=\dfrac{c-b}{16}~~(**)
Từ (*)(**) ta có: 50-\left ( \sum a \right )^2=\dfrac{1}{2}\left [ \sum (a-b)^2 \right ]
=\dfrac{1}{2}\left [ \left (\dfrac{9}{a+b+c}  \right )^2+\left ( \dfrac{-16}{a+b+c} \right )^2+\left ( \dfrac{-7}{a+b+c} \right )^2 \right ]
Đặt (a+b+c)^2=x\Rightarrow 50-x=\dfrac{1}{2}\left ( \dfrac{81}{x}+\dfrac{256}{x}+\dfrac{49}{x} \right )
\Leftrightarrow 2x^2-100x+386=0
\Leftrightarrow \begin{bmatrix}x=25+12\sqrt{3}  &  & \\ x=25-12\sqrt{3}  &  &  \end{bmatrix}
Có: 2(a+b+c)^2-50=2(a+b+c)^2-\left [ 2\sum a^2+\sum ab \right ]=3\sum ab
\Rightarrow \sum ab=\dfrac{2x^2-50}{3}=\pm 8\sqrt{3}

Không có nhận xét nào:

Đăng nhận xét