Processing math: 100%

About

Chủ Nhật, 27 tháng 7, 2014

(xa+yb+zc)\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)\leq \dfrac{(a+c)^{2}}{4ac}(x+y+z)^{2}


Bài toán:
Cho \left\{\begin{matrix} 0< a\leq b\leq c & \\ 0< x,y,z& \end{matrix}\right.
Cmr: (xa+yb+zc)\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)\leq \dfrac{(a+c)^{2}}{4ac}(x+y+z)^{2}

Lời giải:

f(x)=x^2-(a+c)x+ac=02 nghiệm là ac
Do a\leq b\leq c nên f(b)\leq 0
\Leftrightarrow b^2-(a+c)b+ac\leq 0
\Leftrightarrow yb+\dfrac{acy}{b}\leq y(a+c)
\Rightarrow \left(xa+ac.\dfrac{x}{a}\right)+\left(yb+ac.\dfrac{y}{b}\right)+\left(zc+ac.\dfrac{z}{c}\right)\leq (a+c)(x+y+z)
\Rightarrow xa+yb+zc+ac.\sum \dfrac{x}{a}\leq (a+c)(x+y+z)~~~(1)
Áp dụng AM-GM có:
VT(1)\geq 2\sqrt{(xa+yb+zc).ac.\sum \dfrac{x}{a}}
\Rightarrow 2\sqrt{(xa+yb+zc).ac.\sum \dfrac{x}{a}}\leq (a+c)(x+y+z)
\Leftrightarrow 4(xa+yb+zc).ac.\sum \dfrac{x}{a}\leq (a+c)^2(x+y+z)^2
\Leftrightarrow (xa+yb+zc).\sum \dfrac{x}{a}\leq \dfrac{(a+c)^2}{4ac}(x+y+z)^2
(đpcm)

Không có nhận xét nào:

Đăng nhận xét